Appendix 6.5 Design for Economic size of Pumping Main

robient. Design an economic size of pariping main, given the following data.			
1	Water requirements	year	Discharge
	Initial	1989	5 MLD
	Intermediate	2004	7.5 MLD
	Ultimate	2019	10 MLD
2	Length of pumping main	7000m	
3	Static head for pump	50m	
4	Design period	30 years	
5	Combined efficiency of pumping set	60%	
6	Cost of pumping unit	Rs. 2000 per kw	
7	Interest rate	10%	
8	Life of electric motor and pump	15 years	
9	Energy charges	Rs. 1 per unit	
10	Design value of 'C' for C.I. pipe	100	
Solution			
1	Discharge at installation	1 st 15 years	2 nd 15 years
2	Discharge at the end 15 years	5 MLD	7.5 MLD
3	Average discharge	7.5 MLD	10.0 MLD
		5+7.5/2 =6.25 MLD	7.5+10.0/2 = 8.75 MLD
4	Hours of pumping for discharge at the end of 15 years	23	23
5	Average hours of pumping for average discharge	(23/7.5)x6.25 =	(23/10)x8.75 = 20.12
		19.17	

Problem :- Design an economic size of pumping main, given the following data:

6. KW required at 60% combined efficiency of pumping set

 $7.5 \ x \ 10^{6} \ x \ H_{1} \ x \ 100 \ x \ 24$

 $1.48H_1 = KW_1$

 $1.972H_2 = KW_2$

 $-- = KW_2$

 $10 \times 10^{6} \times H_{2} \times 100 \times 24$

60x60x24x102x60x23

KW required = $(Q \times H) / 102 \times 1/\eta \times 24/X$

Where,

Q = Discharge at the end of 15 years in 1ps

H = Total head in m for discharge at the end of 15 years

 η = Combined efficiency of pumping set

X = Hours of pumping for discharge at the end of 15 years

 KW_1

7. Annual cost in Rs. of electrical energy @ Rs. 1 per unit (KWX average hours of pumping x average days per year x 1.00) = $KW_1 \times 19.17 \times 365.24 \times 1.00 = 7001.65 \text{ KW}_1$ $KW_2 \times 20.12 \times 365.24 \times 1.00 = 7348.63 \text{ KW}_2$

8. Pump Cost Captilised $P_n = C = P_o(1 + r)^n$ $P_o = C/(1+r)^n$

Where,

P_o = Initial (1989) Capitalised investment

C = Amount needed after 15 years, that is , in 2004 to purchase the second stage pumping set.

r = Rate of compound interest

- = 10% per year
- n = No. of years = 15

$$P_0 = C/(1+0.1)^{15} = C/4.177$$

9. Energy Charges Capitalised

 $C_c = C_R \{(1 - (1+r)^{-r})/n\}$

For values n = 15 and r = 10% C_{C} = 7.606 C_{R} (C_{C}) 1st stage = 7.606 (C_{R}) 1st stage and (C_{C}) 2nd stage = 7.606 (C_{R}) 2nd stage

Present (1989) energy charges (C_p) for second stage capitalised value i.e for (C_c) 2nd and stage in 2004

 $C_P = (C_C) 2^{nd} \text{ stage} / 4.177$

10. Table I, II, III show the calculations to arrive the most economical pumping main size for the given data.