Appendix 6.5 Design for Economic size of Pumping Main

Problem :- Design an economic size of pumping main, given the following data:

1	Water requirements	year	Discharge
	Initial	1989	5 MLD
	Intermediate	2004	7.5 MLD
	Ultimate	2019	10 MLD
2	Length of pumping main	7000m	
3	Static head for pump	50m	
4	Design period	30 years	
5	Combined efficiency of pumping set	60\%	
6	Cost of pumping unit	Rs. 2000 per kw	
7	Interest rate	10\%	
8	Life of electric motor and pump	15 years	
9	Energy charges	Rs. 1 per unit	
10	Design value of 'C' for C.I. pipe	100	
Solution			
1	Discharge at installation	$1^{\text {st }} 15$ years	$2^{\text {nd }} 15$ years
2	Discharge at the end 15 years	5 MLD	7.5 MLD
3	Average discharge	7.5 MLD	10.0 MLD
		$5+7.5 / 2=6.25$ MLD	$7.5+10.0 / 2=8.75$ MLD
4	Hours of pumping for discharge at the end of 15 years	23	23
5	Average hours of pumping for average discharge	$\begin{array}{r} (23 / 7.5) \times 6.25= \\ 19.17 \end{array}$	$(23 / 10) \times 8.75=20.12$

6. KW required at 60% combined efficiency of pumping set
```
7.5 \times 10 6 x H }\times100\times2
    10\times106 < H2 }\times100\times2
    ------------------------------- = KW1
    60\times60\times24\times102\times60\times23
    60\times60\times24\times102\times60\times23
    1.48H H}=\mp@subsup{K}{1}{
    1.972H2 = KW %
    KW required = (Q x H)/ 102 x 1/\eta x 24/X
    Where,
    Q = Discharge at the end of 15 years in 1ps
    H = Total head in m for discharge at the end of }15\mathrm{ years
    \eta = C o m b i n e d ~ e f f i c i e n c y ~ o f ~ p u m p i n g ~ s e t
    X = Hours of pumping for discharge at the end of 15 years
```

7. Annual cost in Rs. of electrical energy @ Rs. 1 per unit (KWX average hours of pumping x average days per year $x 1.00$)
$=\mathrm{KW}_{1} \times 19.17 \times 365.24 \times 1.00=7001.65 \mathrm{KW}_{1} \quad \mathrm{KW}_{2} \times 20.12 \times 365.24 \times 1.00=7348.63 \mathrm{KW}_{2}$
8. Pump Cost Captilised
$P_{n}=C=P_{0}(1+r)^{n}$
$P_{0}=C /(1+r)^{n}$
Where,
$P_{0}=$ Initial (1989) Capitalised investment
$\mathrm{C}=$ Amount needed after 15 years, that is , in 2004 to purchase the second stage pumping set.
$r=$ Rate of compound interest
$=10 \%$ per year
$\mathrm{n}=$ No. of years $=15$
$P_{0}=C /(1+0.1)^{15}=C / 4.177$
9. Energy Charges Capitalised
$C_{c}=C_{R}\left\{\left(1-(1+r)^{-r}\right) / n\right\}$
For values $n=15$ and $r=10 \%$
$C_{C}=7.606 C_{R}$
$\left(\mathrm{C}_{\mathrm{C}}\right)_{1}{ }^{\text {st }}$ stage $=7.606\left(\mathrm{C}_{\mathrm{R}}\right) 1^{\text {st }}$ stage and
$\left(C_{C}\right) 2^{\text {nd }}$ stage $=7.606\left(C_{R}\right) 2^{\text {nd }}$ stage
Present (1989) energy charges $\left(C_{p}\right)$ for second stage capitalised value i.e for $\left(C_{C}\right) 2^{\text {nd }}$ and stage in 2004
$C_{P}=\left(C_{C}\right) 2^{\text {nd }}$ stage $/ 4.177$
10. Table I, II,III show the calculations to arrive the most economical pumping main size for the given data.
